

Let's describe a new "chess" piece and call it "camel-tone". The piece moves jumping: horizontally or vertically - over two chessboard squares, or diagonally over one square. The picture shows a part of the board with a camel-tone, placed in the center and the positions (marked by x), where it can go with one move. Of course, it cannot go outside the playing board, which happens to be a big square, divided into $\mathbf{N} \times \boldsymbol{N}$ little squares. In this task \boldsymbol{N} is always divisible by 5.

The camel-tone starts at the square in the top-left corner of the board. The game consists of making a sequence of moves on the board, visiting every square exactly once. Moreover, after $\boldsymbol{N}^{2}-1$ moves the piece should be exactly one move away from its starting position. This is a so-called "camel-tonian cycle"!

Task

Write a program camel to find any possible way to play the game, or to report that the cycle is impossible.

Input

A single line is read from the standard input, containing only one integer \boldsymbol{N}.

Output

The program has to write to the standard output:

- one line with the message NO, if you establish that the cycle is impossible
or
- \boldsymbol{N} lines, each containing \boldsymbol{N} space separated numbers, which are the different positive integers between 1 and \boldsymbol{N}^{2} inclusive. The first number in the first line is 1 . The output represents the playing board ($\mathbf{N} \times \boldsymbol{N}$ squares), where integers indicate the consecutive occupied positions. See the example below.

Constraints

- \boldsymbol{N} is divisible by 5
- $5 \leq \boldsymbol{N} \leq 1000$

Grading

- There is a test with $\boldsymbol{N}=5$ that is worth 20% of the points for the task
- The remaining 16 tests are worth 5% of the points each.

Example

Sample Input	Sample Output
10	$\begin{array}{lllllllllll} 1 & 52 & 29 & 8 & 51 & 28 & 9 & 50 & 37 & 16 & \\ 85 & 95 & 59 & 86 & 94 & 66 & 87 & 93 & 65 & 88 \\ 40 & 19 & 100 & 39 & 18 & 76 & 38 & 17 & 77 & 49 \\ 2 & 53 & 30 & 7 & 58 & 27 & 10 & 89 & 36 & 15 & \\ 84 & 96 & 60 & 75 & 99 & 67 & 72 & 92 & 64 & 71 \\ 41 & 20 & 82 & 44 & 23 & 90 & 45 & 24 & 78 & 48 \\ 3 & 54 & 31 & 6 & 57 & 26 & 11 & 68 & 35 & 14 \\ 83 & 97 & 61 & 74 & 98 & 62 & 73 & 91 & 63 & 70 \\ 42 & 21 & 81 & 43 & 22 & 80 & 46 & 25 & 79 & 47 \\ 4 & 55 & 32 & 5 & 56 & 33 & 12 & 69 & 34 & 13 \end{array}$

Explanation: The camel-tone starts at the top left position (row:1, column:1), numbered 1. The second occupied position is (row:4, column:1), so it is numbered 2. The next position is (row:7, column: 1), and it is numbered 3, and so on. The final (hundredth) occupied position is (row:3, column:3), and it is at one move away from the starting position.

1	52	29	8	51	28	9	50	37	16
85	95	59	86	94	66	87	93	65	88
40	19	100	39	18	76	38	17	77	49
2	53	30	7	58	27	10	89	36	15
84	96	60	75	99	67	72	92	64	71
41	20	82	44	23	90	45	24	78	48
3	54	31	6	57	26	11	68	35	14
83	97	61	74	98	62	73	91	63	70
42	21	81	43	22	80	46	25	79	47
4	55	32	5	56	33	12	69	34	13

