交换礼物 (gifts)

【题目描述】

有 m 位选手,最开始每人手里恰好有一份礼物。礼物有"类型",第 i 位选手手中礼物的类型为正整数 g_i 。如果两位选手 i,j $(1 \le i,j \le m)$ 满足 $g_i = g_j$,则说明他们手中的礼物类型相同。

选手之间可以进行多轮礼物交换:每一轮可以任选两位选手,互换他们手里的礼物;同一对选手可以交换多次。最终每位选手手中仍然恰好有一份礼物。设最终第 i 位选手手中的礼物类型为 h_i 。如果 $g_i \neq h_i$,则第 i 位选手"开心";否则"不开心"。目标是通过交换安排,使"开心"的选手数量最大。

举例: 若 g = [3,3,2,1,3], h = [1,2,3,3,3], 则共有 4 位选手开心。由于 m 可能非常大,题目不会直接给出 g,而是给出 n 个序列 s_1, s_2, \ldots, s_n ,并保证 $g = s_n$ 。每个序列 s_i 以如下两种格式之一给出:

- 1 k q[1..k]表示: $s_i = [q_1, q_2, ..., q_k]$.
- 2 x y: 表示 $s_i = s_x + s_y$, 其中"+"表示序列拼接。例如 [3,3,2] + [2,2,3,3] = [3,3,2,2,2,3,3]. 保证: $1 \le x,y \le i-1$

最终我们只关心 s_n (即 g)。请输出在最优交换方案下,最多有多少位选手可以开心。

【输入格式】

本题有多组测试数据 第一行一个整数 T,表示测试用例组数。对于每组用例:

- 第一行一个整数 n, 表示给出的序列个数。
- 接下来 n 行依次描述 s_1, s_2, \ldots, s_n , 每行是上述两种格式之一。

【输出格式】

对于每组用例,输出一行一个整数,表示最多能让多少位选手开心。

【样例1输入】

```
1
2

2
1

3
1
5
3
2
1
3

4
3
3
3
2
3
3
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
2
2
3
3
3
3
4
4
2
2
3
3
3
4
4
4
2
2
3
3
3
4
4
4
4
2
2
3
3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4</
```

7 2 1 2

【样例1输出】

1 4

2 6

【样例1解释】

- 第 1 组: 只有一个序列,直接给出 g = [3,3,2,1,3],最佳安排可使 4 人开心。
- 第2组:
- $s_1 = [3, 3, 3, 2]$
- $s_2 = [2, 2, 3, 3]$
- $s_3 = s_1 + s_2 = [3, 3, 3, 2, 2, 2, 3, 3]$ 即 $g = s_3$,最佳安排可使 6 人开心。

【样例 2】

见选手目录下的 *gifts/gifts2.in* 与 *gifts/gifts2.ans*。

【样例 3】

见选手目录下的 *gifts/gifts3.in* 与 *gifts/gifts3.ans*。

【数据范围】

对于所有测试数据,保证:

- $T \le 10^4$
- $\sum n \le 10^6$
- $\sum k_i \le 10^6$
- $q_i \le 10^9$

测试点	$T \leq$	$\sum n \le$	$\sum k_i \le$	$q_i \leq$	特殊性质
$1 \sim 2$	5	2×10^3	2×10^3	10^{2}	
$3 \sim 5$	10	5×10^{4}	5×10^{4}		$\sum g \le 10^6$
$6 \sim 9$	50	1.2×10^{5}	1.2×10^{5}		$ \mathcal{L} g \leq 10$
10	100	3×10^{5}	3×10^{5}		
$11 \sim 14$	100	3 × 10	3 × 10	10^{9}	
$15 \sim 17$	300	4×10^{5}	4×10^{5}	10	
$18 \sim 20$	1000	5×10^5	5×10^5		$\max g \le 10^{18}$
$21 \sim 23$	3000	8×10^{5}	8×10^{5}		
$24 \sim 25$	10000	10^{6}	10^{6}		