B. Paint a Strip

time limit per test: 1 second memory limit per test: 256 megabytes

You have an array of zeros $a_1, a_2, ..., a_n$ of length n.

You can perform two types of operations on it:

- 1. Choose an index i such that $1 \le i \le n$ and $a_i = 0$, and assign 1 to a_i ;
- 2. Choose a pair of indices l and r such that $1 \le l \le r \le n$, $a_l = 1$, $a_r = 1$, $a_l + \ldots + a_r \ge \lceil \frac{r-l+1}{2} \rceil$, and assign 1 to a_l for all $l \le l \le r$.

What is the minimum number of operations of the first type needed to make all elements of the array equal to one?

Inpu

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 10^4$). The description of the test cases follows.

The only line of each test case contains one integer $n (1 \le n \le 10^5)$ — the length of the array.

Note that there is no limit on the sum of n over all test cases.

Output

For each test case, print one integer - the minimum number of needed operations of first type.

Example

input	Copy
4	10
1	
2	
4	
20	
output	Copy
1	
2	
2	
4	

Note

In the first test case, you can perform an operation of the 1st type with i = 1. In the second test case, you can perform the following sequence of operations:

그렇게 있는 사람들이 있었다. 그 그 사람들은 사람들이 가면 되었다.

- 1. Operation of 1st type, $i\equiv 1$. After performing this operation, the array will look like this: [1,0].
- 2. Operation of 1st type, i = 2. After performing this operation, the array will look like this: [1,1].

The sequence of operations in the second test case

In the third test case, you can perform the following sequence of operations:

- 1. Operation of 1st type, i = 1. After performing this operation, the array will look like this: [1,0,0,0].
- 2. Operation of 1st type, i = 4. After performing this operation, the array will look like this: [1,0,0,1].
- 3. Operation of 2nd type, I=1, r=4. On this segment, $a_l+\ldots+a_r=a_1+a_2+a_3+a_4=2$, which is not less than $\lceil \frac{r-l+1}{2} \rceil=2$. After performing this operation, the array will look like this: $\{1,1,1,1\}$.