C. Remove the Ends Zadanie z Codeforces / Div. 2 / C #### Zadanie pochodzi z platformy Codeforces: https://codeforces.com/contest/2064/problem/C ## C. Remove the Ends time limit per test: 3 seconds memory limit per test: 256 megabytes You have an array a of length n consisting of **non-zero** integers. Initially, you have 0 coins, and you will do the following until a is empty: - Let m be the current size of a. Select an integer i where $1 \leq i \leq m$, gain $|a_i|^*$ coins, and then: - \circ if $a_i < 0$, then replace a with $[a_1, a_2, \ldots, a_{i-1}]$ (that is, delete the suffix beginning with a_i); - \circ otherwise, replace a with $[a_{i+1},a_{i+2},\ldots,a_m]$ (that is, delete the prefix ending with a_i). Find the maximum number of coins you can have at the end of the process. ## Input The first line contains an integer t ($1 \le t \le 10^4$) — the number of testcases. The first line of each testcase contains an integer n ($1 \le n \le 2 \cdot 10^5$) — the length of a. The second line of each testcase contains n integers a_1,a_2,\ldots,a_n ($-10^9 \le a_i \le 10^9$, $a_i \ne 0$). The sum of n across all testcases does not exceed $2 \cdot 10^5$. ## Output For each test case, output the maximum number of coins you can have at the end of the process. $[\]overline{{}^* ext{Here}\;|a_i|}$ represents the absolute value of a_i : it equals a_i when $a_i>0$ and $-a_i$ when $a_i<0$. ## **Example** ## Input 3 6 3 1 4 - 1 - 5 - 9 6 -10 -3 -17 1 19 20 1 1 #### Output 23 40 1 #### Note An example of how to get 23 coins in the first testcase is as follows: • $$a=[3,1,4,-1,-5, \stackrel{\mathbf{-9}}{\longrightarrow}] \stackrel{i=6}{\longrightarrow} a=[3,1,4,-1,-5]$$, and get 9 coins. • $$a=[3,1,4,-1,-5]$$ $\stackrel{=}{\longrightarrow}$ $a=[3,1,4,-1,-5]$, and get 3 coins. $$ullet \ a=[extstyle{1\over 1},4,-1,-5] \stackrel{ op}{\longrightarrow} a=[4,-1,-5]$$, and get 1 coin • $$a=[1,4,-1,-5] \xrightarrow{i=1}^{i=1} a=[4,-1,-5]$$, and get 1 coin. • $a=[4,-1,-5] \xrightarrow{i=2} a=[4,-1]$, and get 5 coins. • $$a = [4, \frac{1}{2}] \xrightarrow{i-2} a = [4]$$, and get 1 coin. • $$a = [4] \xrightarrow{i=1} a = []$$, and get 4 coins. After all the operations, you have 23 coins. An example of how to get 40 coins in the second testcase is as follows: • $$a=[-10,-3,-17, { extbf{1}},19,20] \stackrel{i=4}{\longrightarrow} a=[19,20]$$, and get 1 coin. • $$a=[19,20] \stackrel{i=1}{\longrightarrow} a=[20]$$, and get 19 coins. $$ullet \ a = [{20}] \stackrel{i=1}{\longrightarrow} a = []$$, and get 20 coins. After all the operations, you have 40 coins.