C. Remove the Ends Zadanie z Codeforces / Div. 2 / C

Zadanie pochodzi z platformy Codeforces:

https://codeforces.com/contest/2064/problem/C

C. Remove the Ends

time limit per test: 3 seconds memory limit per test: 256 megabytes

You have an array a of length n consisting of **non-zero** integers. Initially, you have 0 coins, and you will do the following until a is empty:

- Let m be the current size of a. Select an integer i where $1 \leq i \leq m$, gain $|a_i|^*$ coins, and then:
 - \circ if $a_i < 0$, then replace a with $[a_1, a_2, \ldots, a_{i-1}]$ (that is, delete the suffix beginning with a_i);
 - \circ otherwise, replace a with $[a_{i+1},a_{i+2},\ldots,a_m]$ (that is, delete the prefix ending with a_i).

Find the maximum number of coins you can have at the end of the process.

Input

The first line contains an integer t ($1 \le t \le 10^4$) — the number of testcases.

The first line of each testcase contains an integer n ($1 \le n \le 2 \cdot 10^5$) — the length of a.

The second line of each testcase contains n integers a_1,a_2,\ldots,a_n ($-10^9 \le a_i \le 10^9$, $a_i \ne 0$).

The sum of n across all testcases does not exceed $2 \cdot 10^5$.

Output

For each test case, output the maximum number of coins you can have at the end of the process.

 $[\]overline{{}^* ext{Here}\;|a_i|}$ represents the absolute value of a_i : it equals a_i when $a_i>0$ and $-a_i$ when $a_i<0$.

Example

Input

3 6

3 1 4 - 1 - 5 - 9

6

-10 -3 -17 1 19 20

1

1

Output

23

40

1

Note

An example of how to get 23 coins in the first testcase is as follows:

•
$$a=[3,1,4,-1,-5, \stackrel{\mathbf{-9}}{\longrightarrow}] \stackrel{i=6}{\longrightarrow} a=[3,1,4,-1,-5]$$
, and get 9 coins.

•
$$a=[3,1,4,-1,-5]$$
 $\stackrel{=}{\longrightarrow}$ $a=[3,1,4,-1,-5]$, and get 3 coins.

$$ullet \ a=[extstyle{1\over 1},4,-1,-5] \stackrel{ op}{\longrightarrow} a=[4,-1,-5]$$
 , and get 1 coin

•
$$a=[1,4,-1,-5] \xrightarrow{i=1}^{i=1} a=[4,-1,-5]$$
, and get 1 coin.
• $a=[4,-1,-5] \xrightarrow{i=2} a=[4,-1]$, and get 5 coins.

•
$$a = [4, \frac{1}{2}] \xrightarrow{i-2} a = [4]$$
, and get 1 coin.

•
$$a = [4] \xrightarrow{i=1} a = []$$
, and get 4 coins.

After all the operations, you have 23 coins.

An example of how to get 40 coins in the second testcase is as follows:

•
$$a=[-10,-3,-17, { extbf{1}},19,20] \stackrel{i=4}{\longrightarrow} a=[19,20]$$
, and get 1 coin.

•
$$a=[19,20] \stackrel{i=1}{\longrightarrow} a=[20]$$
, and get 19 coins.

$$ullet \ a = [{20}] \stackrel{i=1}{\longrightarrow} a = []$$
 , and get 20 coins.

After all the operations, you have 40 coins.