Elly studies the properties of some given integer \boldsymbol{N}. So far she has discovered that it has no more than six distinct prime divisors. A prime number (or a prime) is a natural number greater than 1 that has no positive divisors other than 1 and itself.

Now the girl spends her time in the following way. Starting with an empty list, she writes divisors of \boldsymbol{N}, greater than 1 (some divisors she may repeat several times). When adding a new number to the list, she makes sure that it has common divisors greater than 1 with at most one of the already written numbers.

For example, if the number \mathbf{N} is 12156144, some of the many possible valid sequences the girl can generate are (42), (616, 6, 91, 23), ($91,616,6,23$), $(66,7),(66,7,7,23,299,66),(143,13,66)$, and (42, 12156144). Examples for invalid sequences would be (5,11), since 5 is not a divisor of 12156144 , or $(66,13,143)$, since 143 has common divisors with both 13 and 66.

Now Elly is wondering how many different valid sequences of divisors of \boldsymbol{N} exist. We consider two sequences different if they have different length or there is a position, in which they have different numbers.

Task

Write a program six that helps Elly to find the number of valid sequences of divisors of \boldsymbol{N}.

Input

From the first line of the standard input your program has to read one integer \boldsymbol{N}.

Output

On the standard output your program has to print one integer - the number of different sequences of divisors of \boldsymbol{N}, which could have been written by Elly. Since this number can be rather large, you are required to print only its remainder when divided by 1000000007.

Constraints

- $1 \leq \boldsymbol{N} \leq 10^{15}$
- In around 30% of the tests \boldsymbol{N} will have at most 2 distinct prime divisors.
- In around 60\% of the tests \boldsymbol{N} will have at most 4 distinct prime divisors.
- In $\mathbf{1 0 0 \%}$ of the tests \boldsymbol{N} will have at most 6 distinct prime divisors.

Example

Sample Input	Sample Output
6	28
203021	33628
60357056 536	907882
12156144	104757552

Explanation: All 28 valid sequences in the first sample are: \{(2), (2, 2), $(2,2,3),(2,2,3,3),(2,3),(2,3,2),(2,3,2,3),(2,3,3),(2,3,3,2),(2,6),(2,6$, 3), (3), (3, 2), (3, 2, 2), (3, 2, 2, 3), (3, 2, 3), (3, 2, 3, 2), (3, 3), (3, 3, 2), $(3,3,2$, 2), $(3,6),(3,6,2),(6),(6,2),(6,2,3),(6,3),(6,3,2),(6,6)\}$

In the last example the answer is 14104757650, but since you are required to print it modulo 1000000 007, the actual result is $14104757650 \% 1000000007$ $=104757552$.

