
Task: TRI

Triangles english

CEOI 2018, day 2. Available memory: 256 MB. 16.08.2018

Byteland is a nice country with n (n ≥ 3) cities, represented as n distinct points on a 2D plane. The cities
are numbered from 1 to n. As a tourist, you do not know the exact locations of the cities in Byteland. From
a tourist magazine you learnt that no three cities are colinear.

The convex hull of a set of n points is a convex polygon with the smallest possible area such that all the n

points are inside or on the border of this polygon. A convex polygon has all angles less than 180 degrees and
cannot have self-intersections.

Your task is to find the number of vertices on the border of the convex hull of the set of Byteland cities.
You may only ask questions for triples of different numbers of cities i, j, k (1 ≤ i, j, k ≤ n). Such a question
concerns a triangle with vertices in cities i, j, k. The answer to the question indicates if traversing the vertices
of the triangle in the order i, j, k is clockwise or counterclockwise.

Communication

Your program should use a library which allows asking questions and announcing the final answer.
The library (trilib.h for C and C++) provides the following functions:

• int get_n();

Returns the number of cities.

• bool is_clockwise(int a, int b, int c);

Returns true if the vertices of the triangle a, b, c (1 ≤ a, b, c ≤ n, a 6= b 6= c 6= a) are given in a clockwise
order and false if they are given in the a counterclockwise order.

• void give_answer(int s);

For Java, the class trilib provides the following methods:

• static public int get_n();

• static public boolean is_clockwise(int a, int b, int c);

• static public void give_answer(int s);

After your program calls give_answer, it is not allowed to ask more questions. It should call give_answer

exactly once.
In this problem, you are not allowed to read from the standard input or to write to the standard output.

After calling give_answer, your program should terminate immediately.
You may assume that the locations of points are established in advance and are not going to change during

the execution of the program (that is, the library behaves in a completely deterministic way). For example, in
the example test case (see below) calling give_answer(4) and immediately exiting would pass the test. Your
program is allowed to try to guess the answer without being sure.

Example interaction

Consider n = 6 cities located at (1, 1), (4, 3), (2, 2), (1, 4), (5, 1), (3, 2) as shown in the picture below. The
convex hull is marked with lines. It contains four vertices on its border, so the result is 4.

x

y

1

2

3

4

5

6

v. 1.01 Triangles 1/2



The following table shows an example interaction with a library that corresponds to this example.

Call Returned value
get_n() 6

is_clockwise(1, 4, 2) true

is_clockwise(4, 2, 1) true

is_clockwise(1, 2, 4) false

is_clockwise(3, 6, 5) true

give_answer(4) –

The picture below shows the triangle from the first query. The cities 1, 4, 2 are in a clockwise order, so the
returned value is true.

x

y

1

2

3

4

5

6

Grading

The test set is divided into the following subtasks with additional constraints. Tests in each of the subtasks
consist of one or more separate test groups. Each test group may contain one or more test cases.

In all tests 3 ≤ n ≤ 40 000. You may call is_clockwise at most 1 000 000 times.

Subtask Constraints Points
1 n ≤ 50 15
2 n ≤ 500 20
3 n ≤ 15 000 20
4 at most one point is not on the border

of the convex hull
20

5 no additional constraints 25

Experiments

In public directory there is an example library allowing you to test formal correctness of your solution. The
library reads a description of Byteland from the standard input in the following format:

• in the first line an integer n, the number of cities,

• in the next n lines: two integers each, the coordinates of the i-th city.

The provided library does not make all checks of your solution. It also does not check the correctness of
the input. It is not the same as the (secret) library on the server.

An example input for the library is given in tri0.in file.
After give_answer is called, the library prints the given answer and the number of calls to is_clockwise

to the standard output.
For compiling the solution with the example library you may use the following commands:

• C: gcc -O2 -static trilib.c tri.c -lm -std=gnu99

• C++: g++ -O2 -static trilib.c tri.cpp -lm -std=c++11

For Java you do not need to use any special command to compile the solution with the library.
The files with the solution and the library should be in the same directory.

v. 1.01 Triangles 2/2


