Two linear particle accelerators \boldsymbol{A} and \boldsymbol{B}, placed opposite to each other at a distance \boldsymbol{L} apart, are propelling elementary particles. \boldsymbol{A} is shooting \boldsymbol{x}-particles, while \boldsymbol{B} is shooting \boldsymbol{y}-particles. The two kinds of particles are flying one opposing the other, and when an \boldsymbol{x}-particle meets a \boldsymbol{y}-particle, they collide and annihilate. One should be aware that an \boldsymbol{x} particle could overtake other \boldsymbol{x}-particles, as well as a \boldsymbol{y}-particle could overtake other \boldsymbol{y}-particles without any consequences for the particles.

Like so, in a given moment of time, which we assume to be zero, a shooting of $\boldsymbol{N} \boldsymbol{x}$-particles and $\boldsymbol{N} \boldsymbol{y}$-particles starts from the two accelerators. Each particle moves with its own constant speed. The particles are numbered in the order of their shooting from 1 to \boldsymbol{N}, this holds true for both the \boldsymbol{x}-particles and the \boldsymbol{y}-particles.

Remark: For time t, a particle with speed v travels distance $s=v t$.
The shooting time moments for the \boldsymbol{x}-particles are $0=\boldsymbol{t} \boldsymbol{x}_{1}<\boldsymbol{t} \boldsymbol{x}_{2}<\boldsymbol{t} \mathbf{x}_{3}$ $<\ldots .<\boldsymbol{t}_{\boldsymbol{N}}$, and their speeds are $\mathbf{v x _ { 1 }}, \mathbf{v} \mathbf{x}_{2}, \boldsymbol{v} \boldsymbol{x}_{3}, \ldots, \boldsymbol{v} \mathbf{x}_{\boldsymbol{N}}$.

Correspondingly, for the \boldsymbol{y}-particles the moments are denoted by $0=\boldsymbol{t}_{\mathbf{1}}<\boldsymbol{t}_{\mathbf{2}}<\boldsymbol{t} \boldsymbol{y}_{3}<\ldots<\boldsymbol{\boldsymbol { t } _ { \boldsymbol { N } }}$, and their speeds by $\boldsymbol{v} \boldsymbol{y}_{\mathbf{1}}, \boldsymbol{v} \boldsymbol{y}_{2}, \boldsymbol{v} \boldsymbol{y}_{\mathbf{3}}, \ldots, \boldsymbol{v} \boldsymbol{y}_{\boldsymbol{N}}$.

The shooting is executed in a way to guarantee the fulfillment of the following conditions:

- Each particle will collide a particle of the opposite type;
- When two particles collide, all other particles will be at a distance greater than or equal to 1 from the collision point. This is guarantee for the first \boldsymbol{K} collisions.

Task

Write a program particles to determine the first \boldsymbol{K} collisions between particles of the two kinds.

Input

The three space separated positive integers $\boldsymbol{N}, \boldsymbol{L}$, and \boldsymbol{K} are read from the first line of the standard input.

The following \boldsymbol{N} lines contain two space separated non-negative integers $\boldsymbol{t} \boldsymbol{x}_{i}$ and $\boldsymbol{v} \boldsymbol{x}_{i}$ each: the shooting moment and the speed of the corresponding \boldsymbol{x}-particle.

The last \boldsymbol{N} input lines contain, respectively, each the shooting moment $\boldsymbol{t}_{\boldsymbol{i}}$ and the speed $\boldsymbol{v} \boldsymbol{y}_{\boldsymbol{i}}$ of the corresponding \boldsymbol{y}-particle in the same format.

Output

The program must print to the standard output \boldsymbol{K} lines, each containing two space separated positive integers: the numbers of the \boldsymbol{x} particle and \boldsymbol{y}-particle, which are involved in the corresponding collision. Lines are output increasingly by the order of collisions - from the first one to the $\boldsymbol{K}^{\mathrm{th}}$.

Constraints

- $1 \leq \boldsymbol{N} \leq 50000$
- In 30% of the tests $\boldsymbol{N} \leq 1000$
- $1 \leq \boldsymbol{L} \leq 10^{9}$
- $1 \leq \boldsymbol{K} \leq 100, \boldsymbol{K} \leq \boldsymbol{N}$
- $0 \leq \boldsymbol{t x}_{i}, \boldsymbol{t}_{\boldsymbol{i}} \leq 10^{9}$
- $1 \leq \boldsymbol{v x} \boldsymbol{x}_{i}, \boldsymbol{v}_{\boldsymbol{i}} \leq 10^{9}$

Example

Sample input	Sample output
41002	42
01	24
23	
32	
610	
05	
310	
51	
720	

