EJOI Day 1 Task **Particles** (English)

Two linear particle accelerators **A** and **B**, placed opposite to each other at a distance **L** apart, are propelling elementary particles. **A** is shooting **x**-particles, while **B** is shooting **y**-particles. The two kinds of particles are flying one opposing the other, and when an **x**-particle meets a **y**-particle, they collide and annihilate. One should be aware that an **x**-particle could overtake other **x**-particles, as well as a **y**-particle could overtake other **y**-particles without any consequences for the particles.

Like so, in a given moment of time, which we assume to be zero, a shooting of $\bf N$ $\bf x$ -particles and $\bf N$ $\bf y$ -particles starts from the two accelerators. Each particle moves with its own *constant* speed. The particles are numbered in the order of their shooting from 1 to $\bf N$, this holds true for both the $\bf x$ -particles and the $\bf y$ -particles.

Remark: For time t, a particle with speed v travels distance s = vt.

The shooting time moments for the x-particles are $0=tx_1 < tx_2 < tx_3 < < tx_N$, and their speeds are $vx_1, vx_2, vx_3, ..., vx_N$.

Correspondingly, for the **y**-particles the moments are denoted by $0=ty_1 < ty_2 < ty_3 < ... < ty_N$, and their speeds by vy_1 , vy_2 , vy_3 , ..., vy_N .

The shooting is executed in a way to guarantee the fulfillment of the following conditions:

- Each particle will collide a particle of the opposite type;
- When two particles collide, all other particles will be at a distance greater than or equal to 1 from the collision point. This is guarantee for the first K collisions.

Task

Write a program **particles** to determine the first \boldsymbol{K} collisions between particles of the two kinds.

Input

The three space separated positive integers N, L, and K are read from the first line of the standard input.

The following N lines contain two space separated non-negative integers tx_i and vx_i each: the shooting moment and the speed of the corresponding x-particle.

The last N input lines contain, respectively, each the shooting moment ty_i and the speed vy_i of the corresponding y-particle in the same format.

Output

The program must print to the standard output K lines, each containing two space separated positive integers: the numbers of the x-particle and y-particle, which are involved in the corresponding collision. Lines are output increasingly by the order of collisions – from the first one to the Kth.

Constraints

- $1 \le N \le 50000$
- In 30% of the tests $N \leq 1000$

• $1 \le L \le 10^9$

Task Particles Page 1 of 2

EJOI Day 1 Task **Particles** (English)

- $1 \le K \le 100, K \le N$
- $0 \le tx_i, ty_i \le 10^9$
- $1 \le vx_i, vy_i \le 10^9$

Example

Sample input	Sample output
4 100 2	4 2
0 1	2 4
2 3	
3 2	
6 10	
0 5	
3 10	
5 1	
7 20	

Task **Particles** Page **2** of **2**