## Buttons

Memory limit : 32 MB

Bajtek found an interesting toy. This toy has $n+1$ buttons. Above each of the first $n$ buttons, there is a small counter, initially showing zero. Pressing the button under the counter increases the number displayed by 1 .
The toy would quickly bore Bajtek if it weren't for the curious operation of the $n+1$-th button. After using it, all counters start displaying the highest value seen so far on the toy. For example, if $n=5$ and the successive counters show the numbers $1,2,3,4,2$, then after pressing the $n+1$-th button, all counters will show 4.
Knowing which buttons Bajtek pressed in sequence, we want to determine the values of all counters after the play is over.

## Input

The first line of the standard input contains two integers $n, m\left(1 \leq n, m \leq 10^{6}\right)$, indicating the number of counters on the toy and the number of operations performed by Bajtek, respectively. The second line of input contains $m$ integers $a_{1}, a_{2}, \ldots, a_{m}\left(1 \leq a_{i} \leq n+1\right)$, indicating the numbers of the successive buttons pressed by Bajtek.
You can assume that in tests worth at least $50 \%$ of the points, the additional conditions $1 \leq$ $n, m \leq 10,000$ are met.

## Output

The first and only line of standard output should contain $n$ integers separated by a single space, indicating the values on the successive counters after the play is over.

## Examples

For the input data :
57
3446144
the correct answer is :

## 32242

For the input data :
710
1118111827
the correct answer is :
6766667
For the input data :
810
1929394959
the correct answer is :

