
Task: TOW
Tower
BOI 2025, Day 1. Available memory: 256 MB. 2025.04.26

There are many legends concerning the Leaning Tower of Toruń. The wall of the tower is a circle with
N ≥ 3 evenly spaced doors (in other words, the doors are the vertices of a regular N -gon). The doors are
numbered from 0 to N − 1, but in a random order. Please refer to the scoring section for more details about
this.

One of the less known legends describes how every new inhabitant of the tower had to complete a certain
challenge. The goal of the challenge was to list the doors, starting with some door and then walking around
the circle (clockwise or counterclockwise), visiting each door exactly once.

This needs to be done without actually seeing the tower. Instead, the new inhabitant can ask questions
of the following form: “Given three distinct doors x, y, z, which pairs of doors are the closest to each other:
{x, y}, {y, z}, or {z, x}?”. The answer to such a question are all pairs (among {x, y}, {y, z} and {z, x}) of doors
with the smallest Euclidean distance. The distance is simply the length of the shortest segment connecting the
doors. Your task is to write a program that will ask a small number of such questions to determine the order
of the doors.

Interaction
This is an interactive task. You should write a program which finds a correct solution to the task and commu-
nicates with the interactor by reading from the standard input and writing to the standard output.

At the beginning of the interaction, your program should read two integers t and k (1 ≤ t ≤ 100, 1 ≤ k ≤
12 000) from the standard input, denoting the number of test cases and the maximum allowed average number
of queries, respectively. See the scoring section for more information about the latter.

For each test case, your program should first read a single integer n (3 ≤ n ≤ 500) from the standard input,
denoting the number of doors in the tower.

Then your program should ask the questions in the following way:
• Your program should write a single line in the form of

? x y z

to the standard output, where x, y, and z are distinct integers (0 ≤ x, y, z ≤ n − 1). This line represents
a single question concerning doors x, y, and z.

• The response will be given as:

r
a1 b1
. . .
ar br

where r is an integer (1 ≤ r ≤ 3) representing the number of pairs of doors with the smallest distance.
Each such pair is described by two integers ai and bi (ai, bi ∈ {x, y, z} and ai < bi).

Once you have determined the order of the doors, you should write a single line in the form of

! x0 x1 . . . xn−1

to the standard output, where x0, x1, . . . , xn−1 is the order of the doors as described in the task statement.
Please note that there are exactly 2n possible correct answers since you can output the order starting from
any door and then going in either direction. Any of them will be accepted.

Keep in mind that after each query or answer you have to flush the output buffer using
cout.flush() (or fflush(stdout) if using printf) in C++ or sys.stdout.flush() in Python. Oth-
erwise your program may receive a Time Limit Exceeded verdict.

After writing the answer to the interactor, your program should immediately proceed to the next test case
or end the interaction if all test cases have been processed.

Your program cannot open any files or use any other resources. It can use the standard error stream for
debugging purposes, but please mind that writing to this stream takes time.

Please also note that the interactor is not adaptive, meaning that the initial order of the doors is fixed
beforehand in each test case and does not change during the interaction.

1/3 Tower



Example interaction
Suppose we have only one test case with n = 6, and the order of the doors is 5, 3, 0, 2, 1, 4. The interaction
could look as follows:

Interactor Your program Comment
1 100 t = 1 and k = 100.
6 Interactor gives the number of doors in the first test case.

? 0 1 2 Your program asks which pairs of doors are the closest.
2 Pairs of doors {0, 2} and {1, 2} are the closest.
0 2
1 2

? 4 1 3 Your program asks which pairs of doors are the closest.
1 Pair {1, 4} is the closest.
1 4

? 0 5 1 Your program asks which pairs of doors are the closest.
3 Pairs {0, 5}, {0, 1}, and {1, 5} are the closest.
0 5
0 1
1 5

! 4 5 3 0 2 1 Your program correctly outputs the order of the doors.

5

30

2

1 4

5

30

2

1 4

5

30

2

1 4

Explanation of the example: The pictures above show the doors with their numbers along the walls
of the tower. In the first picture from the left a triangle formed by the doors with numbers 0, 1, 2 is shown,
corresponding to the first query of your program. We can see that the pairs {0, 2} and {1, 2} are the closest. In
the middle picture a triangle formed by the doors with numbers 1, 4, 3 is shown, corresponding to the second
query of your program. We can clearly see that the pair {1, 4} is the closest. In the third picture from the left a
triangle formed by the doors with numbers 0, 1, 5 is shown, corresponding to the third query of your program.
We can clearly see that all the pairs of doors are equally close to each other.

Please note that the sequences 0, 2, 1, 4, 5, 3 or 5, 4, 1, 2, 0, 3 (and a couple others) would also be correct
answers in this case.

Scoring
Scoring for this problem is divided into subtasks. For each subtask there is exactly one test and this single
test contains exactly t = 100 test cases. For each test, the average number of queries asked by your program
is calculated by taking the total number of queries among all test cases and dividing it by the number of
test cases. If this average is greater than k for a given subtask, you will receive a score of 0 for that subtask.
Otherwise, for subtasks 1 to 4, you will receive full score for that subtask.

For the last subtask, your score will be calculated as follows. Let k∗ be the actual average number of queries
asked by your program. Then, the number of points is given by the following formula:⌈

56 · min
(

1,
12000 − k∗

7800

)⌉
,

meaning that your score increases linearly from 0 to 56 as k∗ goes from 12000 to 4200.
Please note that if your program gives an incorrect answer to any test case, you will receive a score of 0

for that subtask regardless of the number of queries asked.
The additional constraints for each subtask are in the table below.

2/3 Tower



Subtask Constraints Points
1 k = 8000, 3 ≤ n ≤ 9 6
2 k = 4500, 40 ≤ n ≤ 50 7
3 k = 3000, 90 ≤ n ≤ 100 9
4 k = 4500, n = 400, there is a correct answer x0, . . . , xn−1 where xi = i for 200 ≤ i ≤

399
22

5 k = 12 000, n = 500 up to 56

Moreover, you can assume that each test case has been generated by first choosing n uniformly at random
from all values of n satisfying the constraints of a given subtask, and then choosing the order of the doors
uniformly at random from all orders of n doors satisfying the constraints of a given subtask.

3


